Equilibrium periodic dividend strategies with non-exponential discounting for spectrally positive Lévy processes

نویسندگان

چکیده

In the dual risk model, we study periodic dividend problem with a non-exponential discount function which results in time-inconsistent control problem. Viewing it within game theoretic framework, extend Hamilton-Jacobi-Bellman (HJB) system of equations from fixed terminal to time ruin and derive verification theorem, generalize theory classical optimal dividend. Under two special functions, obtain closed-form expressions equilibrium strategy corresponding value compound Poisson model. Finally, some numerical examples are presented illustrate impact parameters.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inventory Control for Spectrally Positive Lévy Demand Processes

A new approach to solve the continuous-time stochastic inventory problem using the fluctuation theory of Lévy processes is developed. This approach involves the recent developments of the scale function that is capable of expressing many fluctuation identities of spectrally one-sided Lévy processes. For the case with a fixed cost and a general spectrally positive Lévy demand process, we show th...

متن کامل

Consumption-investment strategies with non-exponential discounting and logarithmic utility

In this paper, we revisit the consumption-investment problem with a general discount function and a logarithmic utility function in a non-Markovian framework. The coefficients in our model, including the interest rate, appreciation rate and volatility of the stock, are assumed to be adapted stochastic processes. Following Yong (2012a,b)’s method, we study an N-person differential game. We adopt...

متن کامل

Optimal Control with Absolutely Continuous Strategies for Spectrally Negative Lévy Processes

In the last few years there has been renewed interest in the classical control problem of de Finetti [10] for the case that underlying source of randomness is a spectrally negative Lévy process. In particular a significant step forward is made in [25] where it is shown that a natural and very general condition on the underlying Lévy process which allows one to proceed with the analysis of the a...

متن کامل

Optimal portfolios for exponential Lévy processes

We consider the problem of maximizing the expected utility from consumption or terminal wealth in a market where logarithmic securities prices follow a Lévy process. More specifically, we give explicit solutions for power, logarithmic and exponential utility in terms of the Lévy-Chinchine triplet. In the first two cases, a constant fraction of current wealth should be invested in each of the se...

متن کامل

Hitting densities for spectrally positive stable processes

A multiplicative identity in law connecting the hitting times of completely asymmetric α−stable Lévy processes in duality is established. In the spectrally positive case, this identity allows with an elementary argument to compute fractional moments and to get series representations for the density. We also prove that the hitting times are unimodal as soon as α ≤ 3/2. Analogous results are obta...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Industrial and Management Optimization

سال: 2021

ISSN: ['1547-5816', '1553-166X']

DOI: https://doi.org/10.3934/jimo.2020087